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odic homogenization of Hamilton–Jacobi equations proposed 
in [14]. Let V1, V2 ∈ C(Rn) be two given potentials which are 
Zn-periodic, and H1, H2 be the effective Hamiltonians associ-
ated with the Hamiltonians 12 |p|

2+V1, 12 |p|
2+V2, respectively.

A main result in this paper is that, if the dimension n = 2, 
and each of V1, V2 contains exactly 3 mutually non-parallel 
Fourier modes, then

H1 ≡ H2 ⇐⇒ V1(x) = V2

(x
c

+ x0

)
for all x∈T2 = R2/Z2,

for some c ∈ Q \ {0} and x0 ∈ T2. When n ≥ 3, the scenario 
is slightly more subtle, and a complete description is provided 
for any dimension. These resolve partially a conjecture stated 
in [14]. Some other related results and open problems are also 
discussed.
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1. Introduction

1.1. Periodic homogenization and the inverse problem

We first describe the theory of periodic homogenization of Hamilton–Jacobi equations. 
For each length scale ε > 0, let uε ∈ C(Rn × [0, ∞)) be the viscosity solution to

{
uε
t + H(Duε) + V

(
x
ε

)
= 0 in Rn × (0,∞),

uε(x, 0) = g(x) on Rn.
(1.1)

Here, the Hamiltonian H(p) − V (x) is of separable form with H ∈ C(Rn), which is 
coercive (i.e., lim|p|→∞ H(p) = +∞), and V ∈ C(Rn), which is Zn-periodic. The initial 
data g ∈ BUC (Rn), the set of bounded, uniformly continuous functions on Rn.

It was shown in [13] that, in the limit as the length scale ε tends to zero, uε converges 
to u locally uniformly on Rn × [0, ∞), and u solves the effective equation

{
ut + H(Du) = 0 in Rn × (0,∞),
u(x, 0) = g(x) on Rn.

(1.2)

The effective Hamiltonian H ∈ C(Rn) is determined in a nonlinear way by H and V
through the cell problems as follows. For each p ∈ Rn, it was derived in [13] that there 
exists a unique constant c ∈ R such that the following cell problem has a continuous 
viscosity solution

H(p + Dv) + V (x) = c in Tn, (1.3)

where Tn is the n-dimensional flat torus Rn/Zn. We then denote by H(p) := c.
During past decades, there have been tremendous progress and vast literature about 

the validity of homogenization and the well-posedness of cell problems in various general-
ized settings. Nevertheless, understanding theoretically how H depends on the potential 
V remains a very challenging and still largely open problem even for the most basic case 
H(p) = 1

2 |p|2. For a smooth periodic potential V , a deep result in [4] asserts that when 
n = 2 and H(p) = 1

2 |p|2, each non-minimum level curve of H associated with 1
2 |p|2 − V

must contain line segments unless V is constant. Its proof relies on delicate analysis based 
on detailed structure of Aubry–Mather sets in two dimensions and a rigidity result in 
Riemannian geometry (the Hopf conjecture). Besides, due to the highly nonlinear nature 
of the problem, efficient numerical schemes to compute H have yet to be found. We refer 
to [1–3,5–11,15] and the references therein for recent progress.

In this paper, we aim to investigate the relation between V and H from the perspective 
of the following inverse problem first formulated in [14].

Question 1. Let H ∈ C(Rn) be a given coercive function, that is, lim|p|→∞ H(p) = +∞. 
Let V1, V2 ∈ C(Rn) be two given potential energy functions which are Zn-periodic. Let 
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H1, H2 be the effective Hamiltonians corresponding to the Hamiltonians H(p) + V1(x), 
H(p) + V2(x), respectively. If

H1 ≡ H2,

then what can we conclude about the relations between V1 and V2?

When n = 1, a complete answer was provided in [14] for a general class of convex H. 
It was shown that

H1 ≡ H2 ⇐⇒ V1 and V2 have same distributions,

that is, 
1∫

0

f(V1(x)) dx =
1∫

0

f(V2(x)) dx for all f ∈ C(R).

In case n ≥ 2, the only known H-invariant transformations are translation and scaling, 
i.e., for some c ∈ Q ∩ (0, +∞) and x0 ∈ Tn,

V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn =⇒ H1 ≡ H2.

If H is convex and even, the rescaling factor c could also be negative. However, if H is even 
but nonconvex, c has to be positive due to some pathological phenomena associated with 
nonconvexity (loss of evenness [15]). It is natural to investigate the following converse 
question. Throughout this paper, we focus on the mechanical Hamiltonian case, that is, 
the case where H(p) = 1

2 |p|2 for p ∈ Rn.

Question 2. Assume that n ≥ 2, and H(p) = 1
2 |p|2 for p ∈ Rn. Let V1, V2 ∈ C(Rn) be 

two given potential energy functions which are Zn-periodic. Let H1, H2 be the effective 
Hamiltonians corresponding to the Hamiltonians H(p) −V1(x), H(p) −V2(x), respectively. 
If

H1 ≡ H2,

then can we conclude that

V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn,

for some c ∈ Q \ {0} and x0 ∈ Tn?

Some results related to this question were established in [14]. For example, if V1
is constant, then the conclusion of Question 2 holds, that is, V2 must be the same 
constant (see [14, Theorem 1.1]). In the general setting where V1, V2 ∈ C∞(Tn), by [14, 
Theorem 1.2], H1 = H2 implies that
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∫
Tn

V1 dx =
∫
Tn

V2 dx,

and under an extra decay condition of the Fourier coefficients of V1, V2, we also have
∫
Tn

V 2
1 dx =

∫
Tn

V 2
2 dx.

It was conjectured in [14, Remark 1.1] that under the settings of Question 2 and some 
further reasonable assumptions on V1, V2, if H1 = H2, then V1 and V2 have the same 
distribution. Clearly, this conjecture is weaker than the conclusion of Question 2. We 
address more about this point at the end of Subsection 1.2.

It is natural to study the above questions in the case that V1 and V2 are trigonometric 
polynomials with m mutually non-parallel Fourier modes. In this paper, as a preliminary 
step, we settle Question 2 when number of modes m = 3. When m ≤ 2, the analysis is 
much simpler. We give the main results in the following subsection.

1.2. Main results

For l = 1, 2, set

(A)

⎧⎪⎪⎨
⎪⎪⎩
Vl(x) = al0 +

∑m
j=1(λlje

i2πklj ·x + λlje
−i2πklj ·x),

where al0 ∈ R, {λlj}mj=1 ⊂ C and {klj}mj=1 ⊂ Zn \ {0} such that
each pair of the m vectors {klj}mj=1 are not parallel.

Here, λ1j is the complex conjugate of λ1j for 1 ≤ j ≤ m. The following are our main 
results.

Theorem 1.1. Assume that m = 3, n = 2, H(p) = 1
2 |p|2 for all p ∈ R2, and (A) holds. 

Assume that

H1(p) = H2(p) for all p ∈ R2.

Then there exist c ∈ Q \ {0} and x0 ∈ T2 such that

V1(x) = V2

(x
c

+ x0

)
for all x ∈ T2.

Theorem 1.2. Assume that m = 3, n ≥ 3, H(p) = 1
2 |p|2 for all p ∈ Rn, and (A) holds. 

There are three cases as follows.
(1) If {k1j}3

j=1 are mutually orthogonal, then H1 = H2 if and only if for 1 ≤ j ≤ 3,

k1j ‖ k2j and |λ1j | = |λ2j |.
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(2) If k11 ⊥ k12 and k11 ⊥ k13, but k12 ⊥ k13, then H1 = H2 if and only if

k11 ‖ k21, ck12 = k22, ck13 = k23 for some c ∈ Q \ {0},

and for 1 ≤ j ≤ 3,

|λ1j | = |λ2j |.

(3) If {k1j}3
j=1 do not satisfy (1) and (2) after permutations, then

H1 ≡ H2 ⇐⇒ V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn,

for some c ∈ Q \ {0} and x0 ∈ Tn.

Remark 1. Theorem 1.1 can actually be viewed as a special case of (3) in Theorem 1.2. 
Nevertheless, a major part of this paper is devoted to proving this two dimensional result, 
and hence, it is worth stating it as a separate theorem.

For completeness, we also present the case when m ≤ 2.

Theorem 1.3. Assume that m ≤ 2, H(p) = 1
2 |p|2 for all p ∈ Rn, and (A) holds. Then

(1) If m = 1, then

H1 ≡ H2 ⇐⇒ V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn,

for some c ∈ Q \ {0} and x0 ∈ Tn.
(2) If m = 2, then there are two cases.

(i) If k11 ⊥ k12, then H1 ≡ H2 if and only if for j = 1, 2,

k1j ‖ k2j and |λ1j | = |λ2j |.

(ii) If k11 is not perpendicular to k12, then

H1 ≡ H2 ⇐⇒ V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn,

for some c ∈ Q \ {0} and x0 ∈ Tn.

Theorems 1.1–1.3 settle the conjecture stated in [14, Remark 1.1] completely in case 
m ≤ 3. Of course, the case m > 3 is still open.

We believe that the rigidity property should hold for “generic” periodic potentials in 
any dimension. More precisely, we formulate the following conjecture.
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Conjecture 1. We conjecture that

(1) Theorem 1.1 holds when m ≥ 3, n = 2.
(2) If n ≥ 3, then the result of Theorem 1.1 is valid provided that V1, V2 belong to a 

dense open set of smooth periodic functions. In particular, the case that m, n ≥ 3
should be fully characterized.

It is clear that this conjecture is stronger than that in [14, Remark 1.1], but under 
the caveat that we require a generic assumption on V1, V2. Otherwise, it does not hold 
true (see parts (1)–(2) of Theorem 1.2 and part (2)(i) of Theorem 1.3 above).

1.3. Outline of the paper

In Section 2, we give a quick review of the method of asymptotic expansions of H1, H2
at infinity introduced in [14] (see also [12]). This is our main tool in studying the inverse 
problem. The proofs of our results will be given in Sections 3 and 4. They involve delicate 
analysis combining plane geometry, linear algebra and trigonometric functions.

2. Preliminary: asymptotic expansions of H1, H2 at infinity

2.1. Settings

For x ∈ Rn, we write x = (x1, x2, ..., xn).
Assume there exists m ∈ N such that (A) holds. Let us only perform calculations with 

respect to H1. In light of (A), V1 satisfies that
⎧⎪⎪⎨
⎪⎪⎩
V1(x) = a10 +

∑m
j=1(λ1je

i2πk1j ·x + λ1je
−i2πk1j ·x),

where a10 ∈ R, {λ1j}mj=1 ⊂ C and {k1j}mj=1 ⊂ Zn \ {0} such that
each pair of the m vectors {k1j}mj=1 are not parallel.

Recall that λ1j is the complex conjugate of λ1j for 1 ≤ j ≤ m.

2.2. Asymptotic expansion at infinity

For a given vector Q = 0 and ε > 0, set p = Q√
ε
. The cell problem for this vector p is

1
2

∣∣∣∣ Q√ε
+ Dvε1

∣∣∣∣
2

+ V1(x) = H1

(
Q√
ε

)
in Tn.

Here, vε1 ∈ C(Tn) is a solution to the above. Multiply both sides by ε to yield

1 |Q +
√
εDvε1|2 + εV1(x) = εH1

(
Q√

)
=: Hε(Q) in Tn. (2.1)
2 ε
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Let us first use a formal asymptotic expansion to do computations. We use the following 
ansatz {√

εvε1(x) = εv11(x) + ε2v12(x) + ε3v13(x) + · · · ,
H

ε(Q) = a0 + εa1 + ε2a2 + ε3a3 + · · · .

Plug these into (2.1) to imply

1
2 |Q + εDv11 + ε2Dv12 + · · · |2 + εV1 = H

ε(Q) = a0 + εa1 + ε2a2 + · · · in Tn.

We first compare the O(1) terms in both sides of the above equality to get

a0 = 1
2 |Q|2.

By using O(ε), we get

Q ·Dv11 + V1 = a1 in Tn.

Hence, a1 =
∫
Tn V1 dx = a10 and

Dv11 = −
m∑
j=1

(λ1je
i2πk1j ·x + λ1je

−i2πk1j ·x) k1j

k1j ·Q
. (2.2)

Next, using O(ε2), we achieve that

a2 =
m∑
j=1

|λ1j |2|k1j |2
|k1j ·Q|2 , (2.3)

and furthermore,

Q ·Dv12 = a2 −
1
2 |Dv11|2

= −1
2

∑
±k1j±k1l �=0

λ±
1jλ

±
1lk1j · k1l

(k1j ·Q)(k1l ·Q)e
i2π(±k1j±k1l)·x.

Here for convenience, for 1 ≤ j ≤ m, we denote by

λ+
1j = λ1j and λ−

1j = λ1j .

Thus,

Dv12 = −1
2

∑ λ±
1jλ

±
1lk1j · k1l

(k1j ·Q)(k1l ·Q)e
i2π(±k1j±k1l)·x ±k1j ± k1l

(±k1j ± k1l) ·Q
.

±k1j±k1l �=0
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Let us now switch to a symbolic way of writing to keep track with all terms. Denote by ∑
G to be a good sum where all terms are well-defined, that is, all denominators of the 

fractions in the sum are not zero. We have

Dv12 = −1
2
∑
G

λ±
1j1λ

±
1j2k1j1 · k1j2

(k1j1 ·Q)(k1j2 ·Q)e
i2π(±k1j1±k1j2 )·x ±k1j1 ± k1j2

(±k1j1 ± k1j2) ·Q
. (2.4)

Let us now look at O(ε3):

Q ·Dv13 = a3 −Dv11 ·Dv12.

Hence,

a3 =
∫
Tn

Dv11 ·Dv12 dx,

and

Dv13 = −1
2
∑
G

λ±
1j1λ

±
1j2λ

±
1j3(k1j1 · k1j2)(±k1j1 ± k1j2) · k1j3

(k1j1 ·Q)(k1j2 ·Q)(k1j3 ·Q)(±k1j1 ± k1j2) ·Q
×

× ei2π(±k1j1±k1j2±k1j3 )·x ±k1j1 ± k1j2 ± k1j3
(±k1j1 ± k1j2 ± k1j3) ·Q

. (2.5)

The O(ε4) term yields

Dv11 ·Dv13 + 1
2 |Dv12|2 + Q ·Dv14 = a4.

Integrate to get

a4 = 1
2

∫
T2

|Dv12|2 dx +
∫
T2

Dv11 ·Dv13 dx.

The first integral in the formula of a4 contains terms like I(j1, j2) + I(j3, j4) +
II(j1, j2, j3, j4) with

I(j1, j2) = 1
8
|λ1j1 |2|λ1j2 |2|k1j1 · k1j2 |2| ± k1j1 ± k1j2 |2
|k1j1 ·Q|2|k1j2 ·Q|2|(±k1j1 ± k1j2) ·Q|2 ,

and I(j3, j4) is of the exact same form with (j3, j4) in place of (j1, j2). Besides,

II(j1, j2, j3, j4) = 1
8
λ±

1j1λ
±
1j2λ

±
1j3λ

±
1j4(k1j1 · k1j2)(k1j3 · k1j4)

(k1j1 ·Q)(k1j2 ·Q)(k1j3 ·Q)(k1j4 ·Q) · | ± k1j1 ± k1j2 |2
|(±k1j1 ± k1j2) ·Q|2

provided that (j1, j2) = (j3, j4) and ±k1j1 ± k1j2 ± k1j3 ± k1j4 = 0.
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It is more important noticing that the terms that are not vanished in the above 
second integral of a4 are the ones that have ±k1j1 ± k1j2 ± k1j3 ± k1j4 = 0. Hence, 
±k1j1 ± k1j2 ± k1j3 = ∓k1j4 and these terms look like

λ±
1j1λ

±
1j2λ

±
1j3λ

±
1j4(k1j1 · k1j2)[(±k1j1 ± k1j2) · k1j3 ]|k1j4 |2

(k1j1 ·Q)(k1j2 ·Q)(k1j3 ·Q)[(±k1j1 ± k1j2) ·Q]|k1j4 ·Q|2 . (2.6)

Of course, v14 satisfies

Q ·Dv14 = a4 −Dv11 ·Dv13 −
1
2 |Dv12|2. (2.7)

By computing in an iterative way, we can get formulas of al and v1l for all l ∈ N. It 
turns out that this formal asymptotic expansion of Hε(Q) holds true rigorously. For our 
purpose here, we only need the first five terms in the expansion.

Proposition 2.1. Assume that H(p) = 1
2 |p|2 for all p ∈ Rn and (A) holds. Let H1 be the 

effective Hamiltonian corresponding to the Hamiltonian H(p) + V1(x). Let Q = 0 be a 
vector in Rn such that Q is not perpendicular to each nonzero vector of k1j1 , ±k1j1 ±
k1j2 , ±k1j1 ± k1j2 ± k1j3 and ±k1j1 ± k1j2 ± k1j3 ± k1j4 for 1 ≤ j1, j2, j3, j4 ≤ m.

For ε > 0, set Hε(Q) = εH1

(
Q√
ε

)
. Then we have that, as ε → 0,

H
ε(Q) = 1

2 |Q|2 + εa1 + ε2a2 + ε3a3 + ε4a4 + O(ε5).

Here the error term satisfies |O(ε5)| ≤ Kε5 for some K depending only on Q, {λ1j}mj=1
and {k1j}mj=1.

Let us present the proof of this proposition here for the sake of completeness. A version 
of this was presented in [14, Proof of Theorem 1.2 (Part 3)]. See also [12, Lemma 3.1].

Proof. Let v11, v12, v13, v14 be solutions to (2.2), (2.4), (2.5), (2.7), respectively. Let φ =
εv11 + ε2v12 + ε3v13 + ε4v14, then φ satisfies

1
2 |Q + Dφ|2 + εV1 = 1

2 |Q|2 + εa1 + ε2a2 + ε3a3 + ε4a4 + O(ε5) in Tn.

Recall that w =
√
εvε1 is a solution to (2.1). By looking at the places where w−φ attains 

its maximum and minimum and using the definition of viscosity solutions, we arrive at 
the conclusion. �

We prepare some further definitions. Denote
{
A1 = {±k1j , ±k1j ± k1l : 1 ≤ j, l ≤ m and k1j · k1l = 0} ,
A = {±k , ±k ± k : 1 ≤ j, l ≤ m and k · k = 0} .
2 2j 2j 2l 2j 2l
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In other words, if k1j ·k2j = 0 for some i, j ∈ {1, . . . , m}, then we do not collect ±k1j±k2j

in A1.

Definition 1 (Sole vectors). A vector αk1j1 +βk1j2 , where α, β ∈ {−1, 1} and 1 ≤ j1, j2 ≤
m, is called a sole vector from A1 if it is in A1 and is not equal to any other vectors 
in A1.

A vector αk2j1 +βk2j2 , where α, β ∈ {−1, 1} and 1 ≤ j1, j2 ≤ m, is called a sole vector 
from A2 if it is in A2 and is not equal to any other vectors in A2.

Remark 2. If αk1j1 + βk1j2 is a sole vector from A1, then

1
4
|λ1j1 |2|λ1j2 |2|k1j1 · k1j2 |2|αk1j1 + βk1j2 |2
|k1j1 ·Q|2|k1j2 ·Q|2|(αk1j1 + βk1j2) ·Q|2

is the only term in a4 containing 1
|(αk1j1+βk1j2 )·Q|2 .

Definition 2. Let A1 and A2 be two sets of vectors in Rn. We write

A1 ≺ A2

if for any u ∈ A1 \ {0}, there exists v ∈ A2 \ {0} such that u ‖ v.

Remark 3. If H1 ≡ H2, then Remark 2, together with Proposition 2.1, implies that

{
{Sole vectors from A1} ≺ A2

{Sole vectors from A2} ≺ A1.

Heuristically, this could lead to an over-determined linear system, which plays a key role 
in proving our rigidity results.

3. Proof of Theorem 1.1

In this section, we always assume that the settings in Theorem 1.1 are in force. In 
particular, we have n = 2 and m = 3. Without loss of generality, we assume further that 
for l = 1, 2,

(H) kl1, kl2, kl3 are aligned in the counter-clockwise order on the upper half plane 
{x = (x1, x2) : x2 ≥ 0}.

See Fig. 3.1 below.
We proceed to prove Theorem 1.1 via the following lemmas.
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Fig. 3.1. The vectors {k1j}3
j=1.

Lemma 3.1. Assume that the settings in Theorem 1.1 hold. Then a10 = a20 and, for all 
1 ≤ j ≤ 3,

|λ1j | = |λ2j | and k1j

|k1j |
= k2j

|k2j |
.

Proof. We use the asymptotic expansion of Hε(Q) in Proposition 2.1 and compare the 
coefficients to get the conclusion. Firstly, by comparing a1, we imply a10 = a20 immedi-
ately.

Secondly, we use the formula of a2 given in (2.3) to get

3∑
j=1

|λ1j |2|k1j |2
|k1j ·Q|2 =

3∑
j=1

|λ2j |2|k2j |2
|k2j ·Q|2 .

Fix j ∈ {1, 2, 3}. By letting Q → k⊥1j , we use (H) to conclude

k1j

|k1j |
= k2j

|k2j |
and |λ1j | = |λ2j |. � (3.1)

Thanks to Lemma 3.1, for 1 ≤ j ≤ 3, there exists αj > 0 such that

k1j = αjk2j .

The following is a result in linear algebra (or plane geometry), which we believe is of 
independent interest.

Lemma 3.2. For j = 1, 2, 3, let αj > 0 be a given number. Let u1, u2 and u3 be non-
parallel vectors on the upper half plane {x = (x1, x2) : x2 ≥ 0}, which are aligned in the 
counter-clockwise order. Set
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Fig. 3.2. Vectors {uj}3
j=1 and six regions I–VI.

{
S1 = {±ui, ±ui ± uj : 1 ≤ i, j ≤ 3 and ui · uj = 0},
S2 = {±ui, ±αiui ± αjuj : 1 ≤ i < j ≤ 3 and ui · uj = 0}.

If

{
{Sole vectors from S1} ≺ S2,

{Sole vectors from S2} ≺ S1,

then α1 = α2 = α3.

Proof. We may normalize α1 = 1. For 1 ≤ i, j ≤ 3, denote

aij = ui × uj = det[ui, uj ].

Set �a = (a12, a13, a23) ∈ R3.
We prove by contradiction by assuming that α2 and α3 are not both 1. This is rather 

a lengthy proof and we divide it into steps in order to keep track with the key points 
easily. The directions {±uj}3

j=1 divide R2 into six regions named I–VI as in Fig. 3.2.

Part I: Non-orthogonal case. We first assume that u1, u2, u3 are mutually non-orthogonal. 
Then it is easy to see that

{±(u1 + u2), ±(u2 + u3),±(u3 − u1)} ⊆ {Sole vectors from S1}

and

{±(u1 + α2u2), ±(α2u2 + α3u3), ±(α3u3 − u1)} ⊆ {Sole vectors from S2}.
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Step 1. Assume that α2 = 1 but α3 = 1. Then we have that
{
u2 + u3 ‖ u1 + α3u3 or u1 − u2,

u3 − u1 ‖ u1 − u2 or α3u3 − u2,

and {
u2 + α3u3 ‖ u1 + u3 or u1 − u2,

α3u3 − u1 ‖ u1 − u2 or u3 − u2.

Since u2 +u3, u3−u1, u2 +α3u3 and α3u3−u1 are mutually non-parallel, there are only 
two possibilities.

Case 1.1. None of these four vectors is parallel to u1 − u2. Then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2 + u3 ‖ u1 + α3u3,

u3 − u1 ‖ α3u3 − u2,

u2 + α3u3 ‖ u1 + u3,

α3u3 − u1 ‖ u3 − u2.

We use the fact that u × û = 0 provided u ‖ û to yield

�a · wk = 0 for all k = 1, 2, 3, 4.

Here

w1 = (−1,−1, α3), w2 = (1,−α3, 1), w3 = (−1,−α3, 1), w4 = (1,−1, α3).

Therefore, the dimension of V = span{w1, w2, w3, w4} is at most 2. Therefore 
det|w1, w2, w4| = 0, which leads to α3 = 1. This is a contradiction.

Case 1.2. One and only one of these four vectors is parallel to u1 − u2. As the roles 
of u3 and α3u3 are the same, we only need to consider two situations. Either

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2 + u3 ‖ u1 − u2,

u3 − u1 ‖ α3u3 − u2,

u2 + α3u3 ‖ u1 + u3,

α3u3 − u1 ‖ u3 − u2,

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u2 + u3 ‖ u1 + α3u3,

u3 − u1 ‖ u1 − u2,

u2 + α3u3 ‖ u1 + u3,

α3u3 − u1 ‖ u3 − u2.

Then we have either the dimension of span{ŵ1, w2, w3, w4} is 2 or the dimension of 
span{w1, ŵ2, w3, w4} is 2. Here ŵ1 = (−1, −1, 1) and ŵ2 = (1, −1, 1). Both cases lead to 
the same conclusion that α3 = 1. This is a contradiction.

Step 2. Either α2 = α3 = 1 or α2 = α3 = 1. This case can be transformed back to the 
previous case by suitable rotations, reflections and normalizations.
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Step 3: Now we consider the case 1 = α2 = α3 = 1. Then we must have that for 
i, j ∈ {1, 2, 3}

{
ui + uj ∦ αiui + αjuj ,

ui − uj ∦ αiui − αjuj .

Accordingly,

⎧⎪⎪⎨
⎪⎪⎩
u1 + u2 ‖ u1 + α3u3 or α3u3 − α2u2,

u2 + u3 ‖ u1 + α3u3 or α2u2 − u1,

u3 − u1 ‖ α2u2 − u1 or α3u3 − α2u2.

(3.2)

Since u1 + u2, u2 + u3 and u3 − u1 are mutually linearly independent, we have only 
two scenarios

⎧⎪⎪⎨
⎪⎪⎩
u1 + u2 ‖ u1 + α3u3,

u2 + u3 ‖ α2u2 − u1,

u3 − u1 ‖ α3u3 − α2u2,

or

⎧⎪⎪⎨
⎪⎪⎩
u1 + u2 ‖ α3u3 − α2u2,

u2 + u3 ‖ u1 + α3u3,

u3 − u1 ‖ α2u2 − u1.

(3.3)

Similarly, there are two other cases to be considered for u1 + α2u2, α2u2 + α3u3, 
α3u3 − u1

⎧⎪⎪⎨
⎪⎪⎩
u1 + α2u2 ‖ u1 + u3,

α2u2 + α3u3 ‖ u2 − u1,

α3u3 − u1 ‖ u3 − u2,

or

⎧⎪⎪⎨
⎪⎪⎩
u1 + α2u2 ‖ u3 − u2,

α2u2 + α3u3 ‖ u1 + u3,

α3u3 − u1 ‖ u2 − u1.

(3.4)

In total, there are four cases to be studied.
Case 3.1. Assume that

⎧⎪⎪⎨
⎪⎪⎩
u1 + u2 ‖ u1 + α3u3,

u2 + u3 ‖ α2u2 − u1,

u3 − u1 ‖ α3u3 − α2u2,

and

⎧⎪⎪⎨
⎪⎪⎩
u1 + α2u2 ‖ u1 + u3,

α2u2 + α3u3 ‖ u2 − u1,

α3u3 − u1 ‖ u3 − u2.

(3.5)

Considering cross product between parallel vectors, we get that

�a · vi = 0,

for (here we write α = α2 and β = α3)

v1 = (−1, β, β), v2 = (1, 1,−α), v3 = (α,−β, α)
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and

v4 = (−α, 1, α), v5 = (α, β,−β), v6 = (1,−1, β).

Clearly, the dimension of span{v1, v2, v3, v4, v5, v6} is 2. By noting that v2 + v3 = (1 +
α, 1 − β, 0) and v5 + v6 = (α + 1, β − 1, 0), we imply v2 + v3 and v5 + v6 are linearly 
dependent. Otherwise, span{v1, v2, v3, v4, v5, v6} ⊆ {x3 = 0}, which is impossible. Hence 
we obtain that 1 − β = β − 1, that is, β = 1. This is a contradiction.

Case 3.2. We have that⎧⎪⎪⎨
⎪⎪⎩
u1 + u2 ‖ u1 + α3u3,

u2 + u3 ‖ α2u2 − u1,

u3 − u1 ‖ α3u3 − α2u2,

and

⎧⎪⎪⎨
⎪⎪⎩
u1 + α2u2 ‖ u2 − u3,

α2u2 + α3u3 ‖ u1 + u3,

α3u3 − u1 ‖ u2 − u1.

Set

ṽ4 = (1,−1,−α), ṽ5 = (−α,−β, α), ṽ6 = (−1, β,−β).

Similarly, the rank of {v1, v2, v3, ̃v4, ̃v5, ̃v6} is 2. Note that v2 + v3 = (1 +α, 1 − β, 0) and 
v2 + ṽ5 = (1 − α, 1 − β, 0). By the same argument as above, v2 + v3 and v2 + ṽ5 are 
linearly dependent, which leads to β = 1. We again arrive at a contradiction.

Case 3.3. We have that⎧⎪⎪⎨
⎪⎪⎩
u1 + u2 ‖ α3u3 − α2u2,

u2 + u3 ‖ u1 + α3u3,

u3 − u1 ‖ α2u2 − u1,

and

⎧⎪⎪⎨
⎪⎪⎩
u1 + α2u2 ‖ u2 − u3,

α2u2 + α3u3 ‖ u1 + u3,

α3u3 − u1 ‖ u2 − u1.

Set

v̂1 = (−α, β, β), v̂2 = (−1,−1, β), v̂3 = (−α, 1,−α).

Again, the rank of {v̂1, ̂v2, ̂v3, ̃v4, ̃v5, ̃v6} is 2. Note that ṽ4 + ṽ5 = (1 − α, −1 − β, 0) and 
v̂1 − v̂2 = (1 − α, β + 1, 0). Similar to the above, ṽ4 + ṽ5 and v̂1 − v̂2 must be linearly 
dependent, which leads to α = 1. This is again a contradiction.

Due to the symmetry, the remaining case is essentially the same as Case 3.2. We omit 
the proof.

Part II: Orthogonal case. Without loss of generality, we assume the u1 ⊥ u3. The other 
two situations (u1 ⊥ u2 or u2 ⊥ u3) can be converted into this case by suitable reflections 
and rotations. For this case,

{±(u1 + u2), ±(u2 + u3)}
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and

{±(u1 + α2u2), ±(α2u2 + α3u3)}

are still sole vectors of S1 and S2, respectively. Also, it is important to note that, by 
definitions,

±u1 ± u3 /∈ S1 and ± u1 ± α3u3 /∈ S2.

We consider two cases.
Case II.1. Assume that 1 = α2 = α3. Then α1u1 +α2u2 = u1 +u2. By the assumption

{
u2 + u3 ‖ u1 − u2,

u2 + α3u3 ‖ u1 − u2.
(3.6)

This leads to u2 + u3 ‖ u2 + α3u3, which is absurd.
Case II. 2. Assume that α2 = 1. By the assumption, we must that

{
u1 + u2 ‖ α3u3 − α2u2,

α3u3 + α2u2 ‖ u2 − u1.

This is equivalent to
{
u1 + u2 ‖ u3 − α2

α3
u2,

u2 − u1 ‖ u3 + α2
α3

u2.

Then −ra12 + a13 + a23 = −ra12 − a13 + a23 = 0 for r = α2
α3

. This implies that a13 = 0, 
i.e., u1 ‖ u3, which is again absurd. The proof is complete. �

Combining Remark 3 and the above Lemma 3.2, we obtain that there exists c ∈ Q

such that for j = 1, 2, 3,

k2j = ck1j . (3.7)

Without loss of generality, we set c = 1. Note however that Lemma 3.1 only gives us 
that |λ1j | = |λ2j | for 1 ≤ j ≤ 3, which is not yet enough to conclude Theorem 1.1. To 
finish the proof, we need one more relation between {λ1j}3

j=1 and {λ2j}3
j=1.

Since H1 = H2, we get that

max
T2

V1 = H1(0) = H2(0) = max
T2

V2. (3.8)

We use this relation to get the final piece of information. Before doing so, we need some 
preparations.
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Definition 3. Given r1, r2, r3 > 0 and α1, α2 ∈ Q, denote

M(t) = max
θ1,θ2∈R

{r1 cos θ1 + r2 cos θ2 + r3 cos(α1θ1 + α2θ2 + t)} for t ∈ R.

Of course M(t) depends on the parameters r1, r2, r3, α1, α2, but we do not write down 
this dependence explicitly unless there is some confusion.

It is easy to see that maxR M = r1 + r2 + r3, and the maximum is attained when

t = 2mπ + 2m1α1π + 2m2α2π

for m, m1, m2 ∈ Z. Note that the function x �→ cosx does not have non-global local 
maximum. We now show that this fact is also true for M(t).

Lemma 3.3. Every local maximum of M is a global maximum.

Proof. Suppose that t0 is a local maximum of M . Assume that

M(t0) = r1 cos θ1,0 + r2 cos θ2,0 + r3 cos(α1θ1,0 + α2θ2,0 + t0),

for some θ1,0, θ2,0 ∈ R. Then we must have that

cos θ1,0 = cos θ2,0 = cos(α1θ1,0 + α2θ2,0 + t0) = 1.

Otherwise, we can easily perturb θ1,0, θ2,0 and t0 a bit to get a greater value of M near 
t0. �

Now set

l = min {|mπ + m1α1π + m2α2π| : |mπ + m1α1π + m2α2π| > 0, m,m1,m2 ∈ Z} .

Clearly, l > 0 and, for all t ∈ R,

M(t) = M(2l + t) = M(−t) = M(2l − t). (3.9)

Proposition 3.4. The function M is strictly decreasing on [0, l], and is strictly increasing 
on [l, 2l].

Proof. Thanks to Lemma 3.3 and the choice of l, M has no local maximum in (0, 2l).
Besides, (3.9) gives that M(t) = M(2l− t) for all t ∈ (0, 2l), and thus, M cannot have 

any local minimum in (0, l). The proof is complete. �
The following is an immediate implication from Proposition 3.4 and (3.9).
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Corollary 3.5. For t1, t2 ∈ R,

M(t1) = M(t2)

if and only if t1 = t2 + 2kl or t1 = 2kl − t2 for some k ∈ Z.

We are now ready to prove the main result.

Proof of Theorem 1.1. Thanks to (3.7) and the normalization that c = 1, we have k1j =
k2j for all 1 ≤ j ≤ 3. We now write kj = k1j = k2j for simplicity for all 1 ≤ j ≤ 3. Then

V1(x) = a1 +
3∑

j=1

(
λ1je

i2πkj ·x + λ1je
−i2πkj ·x) .

Since k1, k2, k3 are mutually non-parallel, by translation (i.e., x �→ x + x0 for suitable 
x0), we may assume that

V2(x) = a1 +
2∑

j=1

(
λ1je

i2πkj ·x + λ1je
−i2πkj ·x) + λ̃23e

i2πk3·x + λ̃23e
−i2πk3·x.

Denote λ1j = rje
iωj for 1 ≤ j ≤ 3 and λ̃23 = r3e

iω̃3 , where rj > 0 and ωj , ω̃3 ∈ [0, 2π)
for 1 ≤ j ≤ 3. Then

V1(x) = a1 + r1 cos(2πk1 · x + ω1) + r2 cos(2πk2 · x + ω2) + r3 cos(2πk3 · x + ω3)

and

V2(x) = a1 + r1 cos(2πk1 · x + ω1) + r2 cos(2πk2 · x + ω2) + r3 cos(2πk3 · x + ω̃3).

Again by translations, we may further assume that ω1 = ω2 = 0. We write k3 = α1k1 +
α2k2 for some α1, α2 ∈ Q. Then it is clear from the definition of M(·) that

max
T2

V1 = a1 + M(ω3) and max
T2

V2 = a1 + M(ω̃3).

In light of (3.8), we get M(ω3) = M(ω̃3). Assume that

l = mπ + m1α1π + m2α2π,

for some m, m1, m2 ∈ Z. Accordingly, by Corollary 3.5, we have two cases.
Case 1. ω3 = ω̃3 + 2kl for some k ∈ Z. Choose x0 such that

{
k1 · x0 = km1,

k · x = km .
2 0 2
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Then k3 · x0 = kα1m1 + kα2m2 and

V1(x) = V2(x + x0) for all x ∈ T2.

Case 2. ω3 = 2kl − ω̃3 for some k ∈ Z. Choose x0 such that

{
k1 · x0 = km1,

k2 · x0 = km2.

Then k3 · x0 = kα1m1 + kα2m2 and

V1(x) = V2(−x− x0) for all x ∈ T2. �
Remark 4. It is natural to try using more the coefficients {aj}j∈N in the asymptotic 
expansion of Hε instead of (3.8) to prove the last step above. It is, however, quite hard 
to implement this idea. Let us still mention it here.

Choose (m1, m2, m3) ∈ N3 such that the gcd(m1, m2, m3) = 1 and

m2k2 = m1k1 + m3k3.

Let L = m1 + m2 + m3. It is easy to see that aL is the first coefficient that provides us 
information about {λ1j}3

j=1, {λ2j}3
j=1 further than Lemma 3.1. For rj = |λ1j | = |λ2j | for 

1 ≤ j ≤ 3, we have

aL = P (rj , kj , Q : 1 ≤ j ≤ 3) + J(k1, k2, k3, Q)Re
(
λm1

11
(
λ12

)m2
λm3

13

)
.

Here P is a real valued function depending only on {rj, kj , Q : 1 ≤ j ≤ 3} and J a 
real valued function depending only on {k1, k2, k3, Q}. It will be done if we can manage 
to show that J(k1, k2, k3, Q) is not zero for some Q ∈ R2. However, it is not clear to us 
how to verify this since the expression of J is too complicated.

4. Proofs of Theorems 1.2 and 1.3

We first provide the proof of Theorem 1.2.

Proof of Theorem 1.2. We consider each case separately.
(1) The sufficiency part follows immediately from Lemma 3.1. Let us prove the con-

verse. Since {klj}3
j=1 is linearly independent, by suitable translations (x �→ x + x0l), we 

may assume that

V1(x) =
3∑

rj cos(2πk1j · x)

j=1
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and for cj > 0,

V2(x) =
3∑

j=1
rj cos(cj2πk1j · x).

Then the conclusion follows from Lemma 4.1 and changing of variables.
(2) Let us first prove the sufficiency part. Clearly, k12 + k13 and k22 + k23 are sole 

vectors. Since {klj}3
j=1 is linearly independent, due to Lemma 3.1 and Remark 3, we 

must have

k12 + k13 ‖ k22 + k23.

Hence there exists c ∈ Q such that k22 = ck12 and k23 = ck13.
We now prove the converse. By suitable translations, we may assume that

V1(x) = r1 cos(2πk11 · x) + r2 cos(2πk12 · x) + r3 cos(2πk13 · x)

and for c1 > 0,

V2(x) = r1 cos(c12πk11 · x) + r2 cos(c2πk12 · x) + r3 cos(c2πk13 · x).

We then use Lemma 4.1 and changing of variables to get the conclusion.
(3) The necessity part is obvious. Let us prove the sufficiency. Due to Lemma 3.1, 

there are two cases.
Case 1. {k1j}3

j=1 is linearly independent. Due to symmetry, we may assume that k11
is not perpendicular to k12 and k13. Then similar to (2), we have that

k11 + k12 ‖ k21 + k22 and k11 + k13 ‖ k21 + k23.

Hence there exists c ∈ Q such that for j = 1, 2, 3,

k2j = ck1j .

Since {k1j}3
j=1 is linearly independent, it is easy to see that we can find x0 ∈ Rn such 

that

V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn.

Case 2. {k1j}3
j=1 is linearly dependent. The situation is essentially reduced to the 

2-dimensional case and the conclusion follows from Theorem 1.1. �
Next, let us prove Theorem 1.3.
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Proof of Theorem 1.3. We consider each situation separately.
(1) follows immediately from Lemma 3.1.
(2) The proof of part (i) is similar to (1) of Theorem 1.2, and is omitted. Let us now 

consider part (ii). Since k11 and k12 are linearly independent and non-orthogonal, due 
to Lemma 3.1 and Remark 3, we get that

k11 + k12 ‖ k21 + k22.

So there exists c ∈ Q \ {0} such that, for j = 1, 2.

k2j = ck1j .

Accordingly, it is easy to see that we can find x0 such that

V1(x) = V2

(x
c

+ x0

)
for all x ∈ Tn. �

The following is a simple lemma which should be well known to experts. We leave its 
proof as an exercise to the interested readers.

Lemma 4.1. Let n, n1, n2 ∈ N be such that n = n1 + n2. For x ∈ Rn, we write 
x = (x1, x2, . . . , xn) = (x′, x′′) ∈ Rn1 × Rn2 , where x′ = (x1, x2, ..., xn1) and x′′ =
(xn1+1, ..., xn). Similarly, for p ∈ Rn, we write p = (p′, p′′) ∈ Rn1 × Rn2 .

Let Wj ∈ C(Tnj ) be a given potential energy and cj ∈ R \ {0} be a given constant 
for j = 1, 2. Assume that H1(p′), H2(p′′), H(p) are the effective Hamiltonians associated 
with the Hamiltonians 1

2 |p′|2 + W1(x′), 1
2 |p′′|2 + W2(x′′), 1

2 |p|2 + W1(c1x′) + W2(c2x′′), 
respectively. Then

H(p) = H1(p′) + H2(p′′) for all p = (p′, p′′) ∈ Rn1 × Rn2 .

In particular, H is independent of c1 and c2.
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